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AbstractwA theoretical model is presented to explain the relation between the different strain regimes in a 
ductile d~collement level and the ramp geometry. This model accounts for a simple shear regime in the basal flat 
level and a less rotational and more flattening strain regime along the ramp. The model is applied to a field 
example where the ramp dip and the shear value on the basal flat are estimated from pressure shadow data. 

INTRODUCTION FORMULATION OF THE MODEL 

WHEr~ sedimentary rocks presenting high ductility con- 
trasts are submitted to compression, deformation is 
characterized by thrust faults displaying a flat and ramp 
geometry (Boyer & Elliott 1982, Butler 1982, Mitra 
1986). These thrusts propagate through competent beds 
(ramps), and least resistant levels (flats), following a 
staircase trajectory (Eisenstadt & De Paor 1987). In this 
paper we will focus on the deformation of a ductile layer, 
localized at the base of a sedimentary sequence (Fig. 1). 
D6collements are generally localized in weak horizons 
and may show a ductile deformation that affects an 
important thickness of plastic material (Davis & 
Engelder 1985). This is the case, for instance, in the 
external French Alps, where intense shear occurred in 
Triassic rocks (G~ze 1960, Lemoine 1972). Recent 
studies have shown that the deformation pattern in these 
evaporitic plastic horizons is well organized and shows 
structures consistent with progressive ductile shear: 
mylonitic foliation, stretching lineation, 'a'-type folds, 
sheath folds and asymmetrical pressure shadows (Mar- 
coux et al. 1987, Ritz & Malavieille 1988). 

Moreover, numerical simulation of pressure shadows 
around rigid objects included in the deformable matrix 
of the ductile level (Malavieille et al. 1982, Etchecopar & 
Malavieille 1987) showed that the deformation mechan- 
ism beyond the basal flat differs from simple shear 
(Malavieille & Ritz 1989). Deformation in the ductile 
horizon, where it has moved up a ramp, shows more 
flattening and less rotation than in the simple shear 
assumed for the basal fiat. The model we present is 
consistent with the change of strain regime along the 
d6collement, deduced from simulated pressure shadows 
observed in the ramp. Thus, the dip of the ramp and the 
shear strain on the basal flat can be calculated from 
pressure shadow data. 

The model has been applied first, using a simple 
theoretical example in which the ramp dips at 45 ° (Fig. 
1), and then for a field example. In both cases, the initial 
state of the plastic level is represented by a rectangular 
element grid which deforms with time. 

Lagrange variables (Germain 1986) are used to de- 
scribe the kinematics of the d6collement level. The 
displacement field in each part of the plastic level is 
described by linear equation (1), in which variables are 
referred to a local frame of reference (Fig. 2a). The 
different parameters are given in Table 1. 

X(t)i  = O( t ) i jX( to)  j, (1)  

where x(t)i represents the final co-ordinates at time t of a 
material point, whose initial position in the undeformed 
state at time to, is given by X(to)j. Matrix coefficients 
D(t)ij are independent of position. 

To simplify the equations, we have chosen a simple 
theoretical case in which the deformation of the ductile 
horizon satisfies the following constraints: (a) plane 
strain and constant area, which implies that 
Det.[D(t)] = 1; and (b) homogeneous deformation in 
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Fig. 1. Sketch showing deformation of a grid representing a ductile 
d~collement level, for different shear values (the thickness of the basal 

ductile level has been exaggerated). 
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D(t)tt = 1 (2) 

D(t)lz = R(t) (3) 
H 

D(t)2 L = 0 ( 4 )  

O(I)2 2 = 1. (5) 

On the ramp we assume a mixed deformation regime 
(simultaneous simple shear and pure shear). The 
equations defining the transformation matrix D(t)i/in 
the ramp, can be deduced from the known initial and 
final co-ordinates of points A and B (Fig. 2, part 2). 

D ( t ) l  L = 1 + 7 B F ( t ) ' s i n  a (6) 

D(t)jl D(t)lt 1 (7) 
,'£ D(t)L2-- s ina tanfi D(t)ll "tan ~ 

Fig. 2. Geometrical description of the ddcollement level. (a) initial 
state (each part of the d6collement is submitted to a homogeneous 
strain and is limited by virtual lines of strain discontinuity). (b) State at 
time t, where different domains can be recognized. (I) Domain that 
underwent only simple shear. (It) Domain that underwent firstly 
simple shear and then a mixed deformation regime (simultaneous pure 
shear and simple shear). (III) Domain that underwent only the mixed 
regime: pure shear and simple shear. An independent reference frame 
is defined for each part of the d~collement. Thus (XI,  YI), (X2, Y2) 
and (X3, Y3) are local frames of reference for the basal fiat, the ramp 
and the second fiat, respectively. H is the initial thickness of the ductile 

horizon and R(t) is the displacement in the basal flat at time t. 

the different parts of the d6collement. This is consistent 
with observations made by Malavieille & Ritz (1989) on 
ductile deformation in Triassic evaporitic ddcollements. 

In the initial basal flat we assume simple shear defor- 
mation (Fig. 2, part 1). We refer here to the model 
presented by Ramsay & Graham (1970) and the review 
by Sanderson (1982) on models of strain variation in 
nappes and thrust sheets, where deformation corre- 
sponds to a simple shear if there is no volume change. 
For this case 

Table 1. Parameters 

t 

D(t) 0 

H 

e(t) 
Ct 

"lay(t) 

Smax 

Of 

time 

linear transformation tensor between 
initial and final stages 

thickness of the ductile layer 

total displacement on the ddcollement 

ramp angle 

(~ - a)/2 

shear value on the basal fiat at time t 

symmetric component of tensor Dq (pure 
shear) 

rotation angle defining the rigid body 
rotation component of the tensor Dii 

maximum stretch 

angle between the ramp and the greatest 
principal axis of the finite strain ellipse 

angle between the ramp and the greatest 
principal axis of the finite strain ellipse 
in the initial stage 

where 

D(t)21 = l) (8)  

1 
D(t): 2 - (9) 

D(t)ll" 

YBF(t ) _ R(t) 
H 

tan ~p = 

7~v(t) + 
1 1 

s ina  tanfl 

~'av(t) is the shear strain on the basal flat at time t, H is 
the initial thickness of the ddcollement level and R(t) is 
the displacement in the basal flat at time t (Fig. 2b). 

We assume that the magnitude of the total displace- 
ment along the ddcollement is equal to the displacement 
in the basal flat, R(t) (Fig. 2b). This condition fits many 
ramp flat structures as shown by Chapman & Williams 
(1984). Nevertheless, this paper does not attempt to 
describe the deformation regime, outside the ductile 
level. 

We also assume that there is no slip between the 
ductile level and rigid adjacent levels, and no gradual 
transition from the flat strain regime to the ramp strain 
regime (Fig. 2). This simplifies the problem: a transit- 
ional regime could be calculated but it would not change 
the main results of the study. 

The results will be discussed in terms of different 
strain parameters related to the greatest principal axis of 
the strain ellipse. Therefore it is convenient to subdivide 
the homogeneous transformation between the initial 
and the final stages into a rigid-body rotation and a pure 
strain (Oermain 1986): 

(Dll D ,2 ]=  (P~ P . ) (+cos  ~.' sin ~,), (10) 
D22/ P_, , - s i n  g, cos g, 

where 

tan q., - 
Dr2 

D~ + D:2 

P3 = D22"c0s ~' 

(Ii) 

(12) 
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Fig. 3. Deformation paths and finite strains of rigid objects and matrix elements with respect to a local reference frame, the 
origin of which coincides with a material point in the matrix. Finite shear value on the basal fiat is ~F = 4.41. Comparison 
between the flat (a) and the ramp (b). Top: pressure shadows around square rigid object. Middle: deformation of a square 

element in a ductile matrix. Bottom: strain ellipse and deformation path of finite principal axes. 

P2 = P3" tan ~/, 

Pn = (Dtt + P2-sin g,) 
cos 

The strain parameters considered in this study are as 
follows. 

The maximum stretch 

Pt + P3 + X/(Pl + P3) z + 4(P2 z - P1P3). 
Smax (15) 

2 

The angle between the ramp and the greatest principal 
axis of the finite strain ellipse 

Smax - PI). 
Of = arctan ~ P2 

The angle between the ramp and the greatest principal 
axis of the strain ellipse in the initial state 0i (anticlock- 
wise angles for 0i and 0f are defined as positive). 

The clockwise rotation of the greatest principal axis of 
the strain ellipse 

= Oi - Of. 

RESULTS 

To illustrate the different deformation paths, pressure 
shadows around rigid objects have been simulated for 
the ramp geometry represented in Fig. 1. We have 
considered two square objects localized, respectively, 
near the future ramp and in the initial flat (Fig. la) ,  at 
time t = 0. These two objects are submitted to different 
homogeneous strain histories. The finite shear value on 

.~ 12:It.II 

the basal fiat is YaF = 4.41 (Fig. lc). The case of an 
(13) object undergoing a combination of the two histories 

(domain II in Fig. 2b) is omitted in order  to simplify the 
(14) results. 

The comparison between the deformation path off the 
ramp and in the initial flat is represented in Fig. 3. The 
pressure shadows around the object submitted to ramp 
deformation (Fig. 3b, top) are more elongated and 
indicate less rotation than those of the object submitted 
to simple shear (basal flat deformation) (Fig. 3a, top). 

The finite strain ellipses show the difference in ro- 
tation and flattening in the matrix between the two 
deformation regimes (Fig. 3, bottom). The stretch Sma x 
and rotation ~p of the greatest principal axis are 
Smx = 4.98 and ~ = 32.7 ° for the ramp deformation, 

(16) whereas Smax = 4.63 and g, = 65.6 ° for the basal flat 
deformation. 

We can extend these results by calculating the para- 
meters defined previously (~,  Smax, 0i, 0[) as a function 
of the dip of the ramp a,  at different times (Fig. 4). Thus 
the rotation ~p of the greatest principal axis is strongly 
dependent  on the ramp dip ct and tends asymptotically 
with time to ~ = 90 ° - a. For small dips, the rotation 

(17) angle increases rapidly with time; for steeper angles, 
rotation increases smoothly with time and can be anti- 
thetic with respect to the shear sense (Fig. 4a). The 
stretch Smax of the principal axis is slightly higher for 
steep dip angles than for low dip angles. Moreover,  its 
rate of change, aSmax/at, increases with time (Fig. 4b). 
The parameter  0i varies in an almost linear way with 
respect to the dip a and its behaviour is similar to that of 
the rotation ~/, as time increases (Fig. 4c). On Fig. 4(d) it 
is shown that 0f is maximum and equal to 45 ° for a = 0 
and t = At (simple shear case), and decreases with a. 
Thus, the ellipse becomes parallel to the ramp as time 
increases. 
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APPLICATION OF THE MODEL 

One of the possible applications of the model is the 
determination of the ramp dip and the shear value on the 
basal flat from pressure shadow data. These results can 
constrain the construction of cross-sections. To illustrate 
this, we have chosen a field example of a d6collement 
situated in front of the arc de Digne nappe (Southern 
Alps of France), for which data on numerical simulation 
of pressure shadows are available (Malavieille & Ritz 
1989). The finite coaxial stretch parallel to the shear 
plane and the finite shear given from the best sample of 
that study are, respectively, Kf: = 8.07 and Vf = 10.5 
(these parameters are equivalent to parameters D(t)~ 
and D(t)t2 of the transformation matrix in equation 1). 
These values are used to determine the dip of the ramp. 
In Fig. 5, the parameters D(t)i I (Fig. 5a) and D(t)12 (Fig. 

5b) have been calculated as a function of the dip of the 
ramp a and the time t. Horizontal lines representing the 
field values were plotted. The ramp angle is chosen in 
order to explain the field values for a fixed period of 
time. For this experimental case a = 34 ° and t = 12.9. 
The value of the shear strain on the basal fiat is given by 
the intersection between the curve D(t = 1219)i 2 and the 
vertical axis a = 0. For this case 7aF = 12.9. This value 
has been imposed to a ductile level whose thickness in 
the basal fiat (H  = 200 m) (Fig. 6a) was estimated from 
stratigraphic data (geological map of the area) (Kerk- 
hove & Roux 1974). The ramp geometry was taken from 
the geological cross-section, which itself takes into 
account the ramp angle previously deduced (Fig. 6c). 

The theoretical values for the total displacement 
7BF" H(flat) = 2.6 km, and for the thickness of the ductile 
level in the outcrop (75 m) (Fig. 6b), are quite consistent 
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Fig. 5. Deformation parameters as a function of the dip of the ramp and time. (a) Finite coaxial stretch parallel to the shear 
plane; (b) finite shear. The shear value per time unit is equal to 1 on the basal fiat. For the field example, the deformation 
parameters on the first part and the second part of the ramp are equal (Fig. 6). This condition is satisfied since the dip of the 

first part and the second part of the ramp are equal. 

with geological data and field values (2.5 km and 50 m, 
respectively). 

CONCLUSION 

This simple theoretical kinematic model is based upon 
field observations which indicate that the deformation of 
a ductile d6collement level beyond the basal flat shows 

more flattening and less rotation than in the simple shear 
case (deformation mechanism assumed in the basal fiat) 
(Malavieille & Ritz 1989). It also makes it possible to 
estimate the dip of the ramp and the shear value on the 
basal flat from numerical simulation of observed pres- 
sure shadows. Moreover, the total displacement on the 
d6collement can be estimated if the thickness of the 
ductile level is known, though it is probably under- 
estimated since discontinuous deformation can occur in 
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Fig. 6. Application of the model to a field example. (a) Rectangular element grid representing the initial state of the 
d~collement level in the Triassic evaporites. (b) Finite state after imposing parameters deduced from pressure shadow data 

and stratigraphy. (c) Geological cross-section (after Malavieille & Ritz 1989). 
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addition to ductile deformation. These results can be 
taken into account for the construction of balanced 
cross-sections. 

Finally, in the case where the ramp directly joins the 
surface from the initial fiat, we can suggest that the 
diminution of the thickness of the plastic level is one of 
the factors limiting slip on the ramp. 

Acknowledgements--This work has been financed by the U.R.A. 1371 
CNRS. 

REFERENCES 

Boyer, S. E. & Elliott, D. 1982. Thrust systems. Am. Ass. Petrol. 
Geol. 66, 1196-1230. 

Butler. R. W. H. 1982. The terminology of structures in thrust belts. J. 
Struct. Geol. 4, 239-245. 

Chapman, T. J. & Williams, G. D. 1984. Displacement-distance 
methods in the analysis of fold-thrust structures and linked fault 
systems. J. geol. Soc. Lond. 141, 121-128. 

Davis, D. M. & Engelder, T. 1985. The role of salt in fold-and-thrust 
belts. Tectonophysics 119, 67--88. 

Eisenstadt, G. & De Paor, D. G. 1987. Alternative model of thrust- 
fault propagation. Geology 15,630--633. 

Etchecopar, A. & Malavieille, J. 1987. Computer models of pressure- 
shadows: a method for strain measurement and shear-sense deter- 
mination. J. Struct. Geol. 9,667-677. 

Germain, P. 1986. M~canique Tome 1. Ecole Polytechnique. Ellipses. 
G6ze, B. 1960. La g~n6se n6og6ne de I'arc de Nice (Alpes Maritimes). 

C.r. somm. Soc. G(ol. Ft., 33-34. 
Kerkhove, C. & Roux, M. 1974. Carte gdologique de la France a 

1/50,000. Moustiers-Ste-Marie, XXXIV-42. B.R.G.M. 
Lemoine, M. 1972. Rythmes et modalit~s de glissement superposes 

dans les chalnes subalpines mdridionales des AIpes occidentales 
franqaises. Geol. Rdsch. 61. 975-1010. 

Malavieille, J., Etchecopar, A. & Burg, J. P. 1982. Analyse de la 
g~om~trie des zones abritdes: simulation et application fi des exem- 
pies naturels. C.r. Acad. Sci.. Paris 294,279-284. 

Malavieille, J. & Ritz, J. F. 1989. Mylonitic deformation ofevaporites 
in d6collements: examples from the Southern Alps in France. J. 
Struct. Geol. 11,583-590. 

Marcoux, J., Brun, J.-P., Burg, J.-P & Ricou. L. E. 1987. Shear 
structures in anhydrite at the base of thrust sheets (Antalya, 
Southern Turkey). J. Stract. Geol. 9,555-561. 

Mitra, S. 1986. Duplex structures and imbricate thrust systems: 
geometry, structural position, and hydrocarbon potential. Bull. 
Am. Ass. Petrol. Geol. 70, 1087-1112. 

Ramsay, J. G. & Graham. R. H 1970. Strain variation in shear belts. 
Can. J. Earth Sci. 7,786--813. 

Ritz, J. F. & Malavieille. J. 1988. D6formation des evaporites triasi- 
ques associ6es a la mise cn place de diverses nappes alpines: 12~me 
R.S.T., Lille Soc. G(ol. Fr., Paris, 116. 

Sanderson, D. J. 1982. Models of strain variation in nappes and thrust 
sheets: a review. Tectonophysics 88, 201-233. 


